Pre-emptive correction of eriovenous access steno

Pietro Ravani, MD, PhD Professor of Medicine University of Calgary

pravani@ucalgary.ca

D120102016

ANTIGE ANG THILLY ANG LYLICAN

- AVFs/AVGs best but tend to clot: screening needed to maintain patency ('openness')
- AVGs (or people who use them?) more difficult to maintain than AVFs
- Active surveillance detects < Qa due to initial stenosis while the access is still functional
- Pre-emptive correction of stenosis >50% regardless access performance is recommended to maintain patency

AECHAIISH OF UHOHDOSI

Scieening

amination of thrill/bruit; inspection; elevation; augmentation test

mostasis time

parameters, Qb, A/TM pressure, KT

Surveillance

Direct measures of Qa

Indirect measures (dynamic/static VP)

Doppler (anatomic and functional data

r i opi i yiaxis

functional access without known

cal monitoring and deferred stenosis (when the access becomes

e Qa surveillance and pre-emptive stenosis in a functional access

Secondary

Population with a **functional** access we stenosis

<u>Comparator</u>: Deferred stenosis correc access becomes dysfunctional)

Intervention: Pre-emptive stenosis cor

an access able to deliver the prescribed dialysis dos n)

e correction (surveillance)

rrection (monitoring)

of the access (loss/thrombosis) and of the patient (dea procedures)

reterogenency

Observed effects more different from each other to expected by chance alo

LXaIIIPIE

Meta-analysis 1

Meta-analysis 2

D1	D0	D1	Do							posed		
		٥,	D0	Rel	lative Risk [95% CI]	Study, Year	r D	D0	D1	D0		Relative Ri
13	542	18	537	⊢ •	0.72 [0.56 , 0.93]	Study G,19	99 1 ⁻	544	21	534	⊢ •→!	0.52 [(
16	412	19	409	├ ■	0.84 [0.68 , 1.05]	Study H,20	10 17	' 409	18	408		0.94 [(
22	805	27	800	⊢• →	0.81 [0.70 , 0.95]	Study I,200	5 19	808	31	796	⊢■→	0.61 [(
13	520	15	518	1	0.87 [0.66 , 1.14]	Study L,200)9 1 ⁻	521	12	520	ı -	· 0.92 [0
38	1336	49	1325	H∎H	0.78 [0.71 , 0.85]	Study M,20	12 42	2 1331	53	1321	HEEH	0.79 [(
64	489	88	465		0.73 [0.69 , 0.76]	Study N,20	14 61	492	79	474	•	0.77 [(
			0.25	0.50 1.00	0.75 [0.72 , 0.79] P<0.001	RE Model				0.25	0.50 1.00	0.75 [(
	16 22 13 38 64	16 41222 80513 52038 1336	16 412 19 22 805 27 13 520 15 38 1336 49 64 489 88	13 520 15 518 38 1336 49 1325 64 489 88 465 2 = 0.099 9 = 0.353	16 412 19 409 22 805 27 800 13 520 15 518 38 1336 49 1325 64 489 88 465	16 412 19 409 22 805 27 800 13 520 15 518 38 1336 49 1325 64 489 88 465 ■ 0.84 [0.68 , 1.05] 0.81 [0.70 , 0.95] 0.87 [0.66 , 1.14] 0.78 [0.71 , 0.85] 0.73 [0.69 , 0.76] 0.75 [0.72 , 0.79] P<0.001	16 412 19 409	16 412 19 409	16 412 19 409 22 805 27 800 13 520 15 518 38 1336 49 1325 64 489 88 465 ■ 0.84 [0.68 , 1.05] Study H,2010 17 409 0.81 [0.70 , 0.95] Study I,2005 19 808 10 0.87 [0.66 , 1.14] Study L,2009 11 521 10 0.78 [0.71 , 0.85] Study M,2012 42 1331 11 52	16 412 19 409	16 412 19 409 □ 0.84 [0.68 , 1.05] Study H,2010 17 409 18 408 22 805 27 800 □ 0.81 [0.70 , 0.95] Study I,2005 19 808 31 796 13 520 15 518 □ 0.87 [0.66 , 1.14] Study L,2009 11 521 12 520 38 1336 49 1325 □ 0.78 [0.71 , 0.85] Study M,2012 42 1331 53 1321 64 489 88 465 □ 0.75 [0.72 , 0.79] Study N,2014 61 492 79 474 □ 0.75 [0.72 , 0.79] P<0.001 □ RE Model I² = 0.76 P<0.001	16 412 19 409

Sub-group analyses

ess (AVF vs. AVG)

ntervention (primary vs. secondary prophylaxis)

veillance in primary prophylaxis (Qa data only vs. US)

4

6

Allocation concealment (selection bias)

Early termination of a study with failure to report pre-specified stopping rules; Industry sponsor as author or involved in data handling and analysis; and

	Random sequence generation (selection	Allocation concealment (selection bias)	Intention-to- treat analysis (selection bias)	Blinding of participants and personnel	Blinding of outcome assessment (detection	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	
	bias)			(performance bias)	bias)			
)4	+	ý	+	-	?	-	+	
97	+	-	-	-	?	?	+	
	?	?	?	-	?	?	+	
	?	?	-	-	?	-	+	
	+	+	+	+	?	+	+	
e 2006	+	+	?	+	+	+	+	
	+	+	+	+	?	+	-	
5	+	+	+	-	?	+	+	
	?	?	?	-	?	-	+	
)9	?	-	?	-	?	?	+	
1	?	?	?	-	?	?	+	
03	?	-	-	-	?	+	+	
04	?	-	-	-	?	-	+	
14	?	?	?	-	?	+	+	

Study ID									
Access Type = Fistula									
Tessitore 2004	4	43	5	36		0.67	[0.19; 2.31]	3.2%	
Tessitore 2003	4	32	6	30		0.62	[0.20; 2.00]	3.6%	
Scaffaro 2009	4	53	10	58		0.44	[0.15; 1.31]	4.1%	
Tessitore 2014	5	28	13	30	-	0.41	[0.17; 1.01]	6.2%	
Random effects model		156		154		0.50	[0.29; 0.86]	17.1%	
Heterogeneity: I-squared=0%,	p=0.898	33							
Access Type = Graft									
Ram 2003 (DU)	9	35	5	17		0.87	[0.35; 2.21]	5.7%	
Ram 2003 (Q _a)	9	32	5	17	- i •	0.96	[0.38; 2.40]	5.8%	
Moist 2003	9	59	8	53		1.01	[0.42; 2.43]	6.4%	
Mayer 1993	10	35	10	35		1.00	[0.48; 2.10]	9.0%	
Malik 2005	11	97	20	92		0.52	[0.26; 1.03]	10.7%	
Dember 2004	14	32	14	32	-	1.00	[0.57; 1.74]	16.0%	
Robbin 2006	27	65	26	61		0.97	[0.65; 1.47]	29.3%	
Random effects model		355		307		0.90	[0.71; 1.15]	82.9%	
Heterogeneity: I-squared=0%,	p=0.817	73							
Random effects model		511		461		0.81	[0.65; 1.02]	100%	
Heterogeneity: I-squared=0%, p=0.6929									
Test for subgroup differences 0-2 9 df-1 p-0.0507									

Test for subgroup differences: Q=3.8, df=1, p=0.0507

Access Type = Fistula							
Sands 1999 (SP/DU)	1	23	2	13 -	-	0.28 [0.03; 2.82] 0.8%	0
Sands 1999 (Q _a /DU)		19	2	13		0.34 [0.03; 3.39] 0.8%	0
Polkinghorne 2006	6	69	4	68		1.48 [0.44; 5.01] 2.5%	0
Tessitore 2003	6	32	14	30		0.40 [0.18; 0.91] 4.8%	ó
Tessitore 2014	6	28	15	30		0.43 [0.19; 0.95] 5.0%	0
Scaffaro 2009	9	53	14	58	-	0.70 [0.33; 1.49] 5.4%	0
Tessitore 2004	8	43	18	36	-	0.37 [0.18; 0.75] 5.9%	ó
Random effects model		267		248	♦	0.50 [0.35; 0.71] 25.1%	0
Heterogeneity: I-squared=0%,	p=0.510	04					
Access Type = Graft							
Sands 1999 (Q _a /DU)	1	8	2	7		0.44 [0.05; 3.85] 0.9%	ó
Sands 1999 (SP/DU)	3	12	3	8		0.67 [0.18; 2.51] 2.2%	ó
Smits 2001 (Q _a)	6	28	6	25		0.89 [0.33; 2.41] 3.5%	Ó
Dember 2004	5	32	11	32		0.45 [0.18; 1.16] 3.9%	ó
Mayer 1993	11	35	18	35	-	0.61 [0.34; 1.10] 7.5%	ó
Smits 2001 (Q _a /SP)	18	41	12	31	-	1.13 [0.65; 1.99] 7.9%	ó
Robbin 2006	18	65	21	61		0.80 [0.48; 1.36] 8.5%	ó
Lumsden 1997	17	32	16	32	-	1.06 [0.66; 1.71] 9.4%	ó
Moist 2003	26	59	18	53		1.30 [0.81; 2.08] 9.5%	ó
Ram 2003 (Q _a)	20	32	11	17	-	0.97 [0.62; 1.50] 10.1%	0
Ram 2003 (DU)	25	35	12	17		1.01 [0.70; 1.47] 11.7%	ó
Random effects model 379				318	*	0.95 [0.80; 1.12] 74.9%	ó
Heterogeneity: I-squared=0%,	p=0.619)					
Random effects model		646		566	♦	0.79 [0.64; 0.97] 100%	ó
Heterogeneity: I_squared=27.4	% n=0	1362					

Favours Pre-emptive Correction Favours Deferred Correction

Dember 2004		-	3.25	[0.53;	20.11]	3.8%	
Tessitore 2014	-	<u> </u>	0.90	[0.16;	_	4.0%	
Robbin 2006	-	+	1.80	[0.63;	5.14]	6.5%	
Random effects model	4	\Diamond	1.74	[0.78;	3.91]	14.2%	
Heterogeneity: I-squared=0%, p=0.6051							
Outcome = Angiograms							
Dember 2004		-	— 52.87	[6.27; 4	45.78]	3.1%	
Ram 2003 (Q _a)	1	1	1.86	[0.80;	4.35]	7.4%	
Ram 2003 (DU)			2.95	[1.31;	6.65]	7.6%	
Polkinghorne 2006	+	+	1.59	[0.81;	3.14]	8.1%	
Smits 2001 (Q _a)			1.08	[0.64;	1.82]	8.8%	
Smits 2001 (Q _a /SP)		+	1.22	[0.72;	2.07]	8.8%	
Moist 2003)	-+-	1.72	[1.18;	2.51]	9.4%	
Random effects model		\Diamond	1.64	[1.24;	2.18]	53.1%	
Heterogeneity: I-squared=62.4%, p=0.014							
Outcome = Hospitalizations							
Ram 2003 (DU)			0.36	[0.15;	0.85]	7.3%	
Tessitore 2003			0.27	[0.12;	0.62]	7.5%	
Ram 2003 (Q _a)	-	-	1.14	[0.61;	2.12]	8.4%	
Tessitore 2004	+		0.59	[0.41;	0.84]	9.4%	
Random effects model	\Diamond		0.54	[0.30;	0.97]	32.7%	

Julillary Or Illuligs

	Higher risk population for hemodialysis)	on (people using a graft	RR 0.90 [0.71,	662 (7 cohorts form	⊕⊕⊝⊝	Sub-gı	
ess loss (over one	150 per 1000	135 per 1000 (107 to 172)	1.15]	6 studies)	moderate		
	Lower risk population for hemodialysis)	on (people using a fistula	RR 0.5 [0.29,	210 (4 studios)	⊕⊖⊝	analys	
	100 per 1000 50 per 1000 (29 to 86)		0.86]	310 (4 studies)	low		
jiograms	People using any arteriovenous access (fistula or graft)		RR 1.78 [1.18,	539 (7 cohorts form	⊕⊝⊝⊝	Second	
atient-years)	300 per 1000	534 per 1000 (354 to 801)	2.67]	5 studies)	low	outcor	
		· · · · · · · · · · · · · · · · · · ·		·			

RR 1.38 [0.90,

2.11]

586 (5 studies)

 $\oplus \ominus \ominus \ominus$

low

Second

outcor

People using any arteriovenous access (fistula

207 per 1000

(135 to 317)

or graft)

150 per 1000

over one year)

and low quality studies available; low confidence in

- s from people using grafts
- information reported for **complex strategies** (algorith referral, intervention details)
- t **or no data on**: resource use, cost; patient outcomes rspectives

Cillical Implications

of surveillance/pre-emptive correction in grafts; **pote** i fistulas

otential for harm/inconvenience patients need to be ir naking

cal monitoring?

when proposing graft to patients (and to the nephrology)?

Nescardi III piloaudi S

red for 3 years will have a power >90% to detect as single of 0.01 a 30% or greater reduction in HR for access risk 0.1; drop-out 0.1)

earch: RCT of ~ 1,000 participants per arm recruited

Summary

e stenosis correction may reduce the risk of thrombost access loss; uncertain benefits in terms of hospitalization of fistulas but effects may not be significantly different

arms under-reported

ws ignored

opic needing large and good quality studies

IIIaiin you

Pietro Ravani, MD, PhD Professor of Medicine University of Calgary

pravani@ucalgary.ca

in Thrombosis Rate and Improvement in Assisted and Secondary Patency. A Randomized Clinical Trial Ines Aragoncillo, Soraya Abad, Silvia Caldés, Antonio Cirugeda, Almudena Vega, Cristina Fernandez, Cristina Moratilla, Nicolás Macías, Juan Manuel Lopez Gomez, Fernando De Alvaro Moreno. Mephrology, H Gregorio Marañon, Madrid, Spain; Nephrology, H Infanta Sofia, Madrid, Spain; Nephrology, Clinica Fuensanta, Madrid, Spain; Nephrology, H Clinico, Madrid, Spain.

Background: Stenosis is the main cause of arteriovenous fistula (AVF) failure. It is still unclear if surveillance based on Vascular Access Blood Flow (Q_A) enhances AVF function and longevity.

Methods: 3-year follow up randomized, controlled, multicentric, open-label trial, comparing Q_A surveillance (pre-emptive repair of subclinical stenoses with angioplasty and/or open surgery) with standard monitoring/surveillance (intervention based on classic criteria) in mature autologous AVFs. AVFs were randomized to either control group (surveillance based on venous pressure, recirculation, dialysis dose...; n=104) or to Q_A group $[Q_A$ was measured quarterly using doppler ultrasound (*M-Turbo*®) and ultrasound dilution method (Transonic®)n=103]. The criteria for intervention in Q_A group were 25% reduction in Q_A , Q_A <500 ml/min or significant stenosis with >50% reducción in vessel lumen and haemodinamic repercussion [Peak Sistolic Velocity (PSV) >400ml/min or PSV stenosis/PSV pre-stenosis > 3).

Results: Significant reduction in thrombosis rate (0,025 thrombosis/patient/year in the Q_A group compared with 0,086 thrombosis/patient/year in control group. p= 0,007) Significant improvement in assisted primary patency rate and secondary patency rate in Q_A group (HR 0,30 CI 0,11-0,82. P=0,011 / HR 0,49 CI 0,26-0,93. p=0,030) No differences in non-assisted primary patency rate between groups (HR 0,98 CI 0,57-1,61. p=0,935). Higher needs of central venous catether and hospitalizations related with VA in control group (p<0,001 / p=0,003). - Higher total VA related costs in control group (217.845 € vs 124.186 €, p=0.029).